The Drop Shunting Problem

Montaz Ali¹ & Stephen Visagie² 1: School of Computer Science and Applied Mathematics University of the Witwatersrand, Johannesburg, South Africa

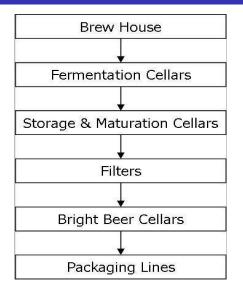
2: Department of Logistics, Stellenbosch University, South Africa

February 7, 2022

1 Maco View of Brewerys

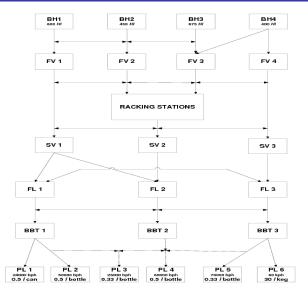
- 2 The Conceptual Layout
- 3 Demand, Stock Keeping Units (SKU), Packaging Types
- 4 Efficient Delivery by Trailer-Truck for Meeting Daily Demand
- 5 Heuristic Method of Solution
- 6 The Mathematical Modelling Approach

- The brewhouse (BH),
- Fermentation (FV),
- Storage and maturation (SV),
- Filtration,
- Bright beer cellars (BBT),
- Packaging lines.



э

The Conceptual Layout



Montaz Ali¹ & Stephen Visagie² 1: Schc

The Drop Shunting Problem

February 7, 2022 5 / 20

3

イロト イポト イヨト イヨト

Table: Examples of SKUs

Brand	Pack Type	Demand at t_o
A	0.33 / Bottle	3897 <i>HI</i>
A	0.5 / Can	3122 <i>HI</i>
В	0.33 / Bottle	4865 <i>HI</i>
В	0.5 / Can	3028 <i>HI</i>
E	0.33 / Bottle	1465 <i>HI</i>
E	0.5 / Bottle	4144 <i>HI</i>
E	0.5 / Can	1012 <i>HI</i>

э

Table: Pack Types

Pack Type	Description	PTV _j (1)
1	Keg	30
2	Bottle	0.33
3	Can	0.5
4	Bottle	0.5

Brand A = 1, Pack Type=2 \Rightarrow SKU=12

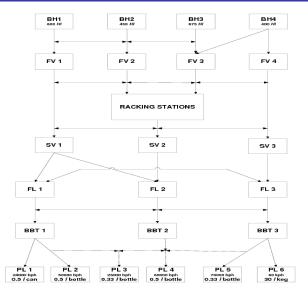
э

#	SKU	Brand	Pack Type	Volume (HI)
1	11	1	1	180
2	14	1	4	12782
3	23	2	3	3602
4	24	2	4	13574
5	32	3	2	10959
6	44	4	4	865
7	54	5	4	3732
8	64	6	4	2371
9	71	7	1	370
10	73	7	3	3674
11	74	7	4	6802
12	81	8	1	580
13	83	8	3	3616
14	84	8	4	7415
15	92	9	2	1506

< A

æ

The Conceptual Layout



Montaz Ali¹ & Stephen Visagie² 1: Schc

The Drop Shunting Problem

February 7, 2022 9

イロト イポト イヨト イヨト

9 / 20

3

Figure: Demand Met By Efficient Use of Trucks and Trailers

shutterstock.com · 650251378

э

10 / 20

Assumptions

- A single Depot is considered. A geographical Area Filled by Customers
- #Trucks=p; #Trailers=q; #Customers=r; $p \ll q \ll r$.
- Demands are uploaded in Trailers and Trucks just moves Trailers around (or drop them to the Depot).
- All Trailers are uniform (all have the same Capacity).
- Capacity of the Trailer: Multiples of average demand per customer.
- Demands are such that a Trailer can Upload the maximum demand.
- A Trailer moves back and froth (from Customer to Depot)–Multiple Uploading
- Activities are Daily

Defining Customer Demand, Capacity of Trailers

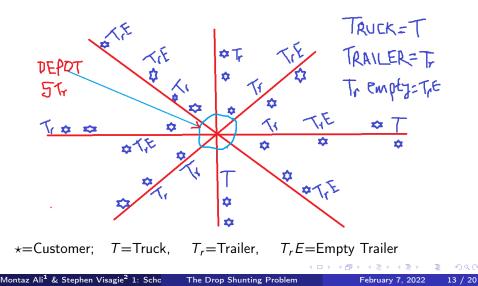
- Customer 1
 - SKU=21: 25,000 Bottle
 - SKU=13: 20,000 Cans
 - • •
- Customer 2
 - SKU=34: 15,000 Bottle
 - SKU=33: 10,000 Cans
 - SKU=22: 5,000 Bottles
 - SKU=13: 5,000 Cans

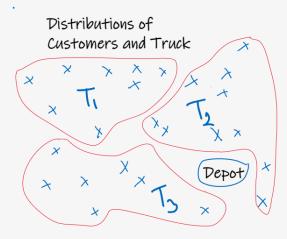
Pack Type	Description	PTV _j (I)
1	Keg	30
2	Bottle	0.33
3	Can	0.5
4	Bottle	0.5

Table: Pack Types

Distribution of Customers/Demands

Figure: Location of Demands, Trucks and Trailers





æ

14 / 20

< A

- Each Trailer: job_i, job_j, job_k (Trip₁); job_k, job_l, job_m (Trip₂) and so on
- Which Sequence is better for the Truck:

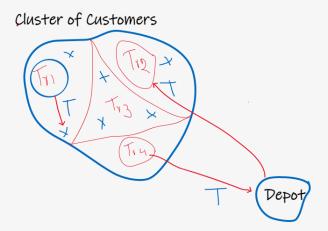
 $Truck : (Tr_1, \cdot), (Tr_2, \cdot), (Tr_3, \cdot), (Tr_4, \cdot), (Tr_5, \cdot), (Tr_1, \cdot), (Tr_2, \cdot), (\cdot, TrE_1), (Tr_6, \cdot) \cdots$

 $Truck : (Tr_1, \cdot), (Tr_2, \cdot), (Tr_1, \cdot), (Tr_2, \cdot), (Tr_1, \cdot), (Tr_2, \cdot), (\cdot, TrE_1), (\cdot, TrE_1), (Tr_3, \cdot) \cdots$

Distance Travelled by a Truck is dependent of the job-I assigned to Trailers in a cluster.

3

T: Truck; Tr: Trailer; x: Customer



Non-mathematical and Heuristics Approaches

- Subdivide the Customers into *p* number of Clusters (there are *p* Trucks): Use the *p*-mean algorithm
- Each Truck is assigned to one cluster; Assign a number of Trailers at each Cluster (e.g. *q/p* Trailers per Cluster)
- Consider Each Demand as a Job (Job-I); Job-II are assignment of T_rE (empty trailers) and non empty trailers to a Truck.
- Upload a number of Type-I jobs in a Cluster to each Trailer for each Trip. A sequence of Uploads is needed for Each Trailer (Optimal Decision is needed here).
- Each Truck needs to perform a sequence of Type-II jobs (Optimal Sequencing is needed here)
- Daily Demand Scenario (Created Randomly) Must Be Met

17 / 20

The Mathematical Approach

- (#Trucks, #Trailers, #Customers)=(p, q, r); Depot: $DP \in \mathbb{R}^2$;
- Customer Locations: $\{C(1), C(2), \cdots, C(r)\}, C(i) \in \mathbb{R}^2$;
- Demands: $\{D(1), D(2), \cdots, D(r)\}, D(i) > 0$
- An Optimal Ordered Partition $\{R^1, R^2, \cdots, R^p\}$ s.t. $\{C(1), C(2), \cdots, C(r)\} = \bigcup_i^p R^i, R^i \cap R^j = \emptyset$
- The Ordered Set $R^k = \{ C(r_1^k), C(r_2^k), C(r_3^k), C(r_1^k), \cdots, C(r_{(s)}^k) \}$
- Cost Function for Truck k:

 $c(R^{k}) = d(DP, C(r_{1}^{k})) + d(C(r_{1}^{k}), DP) + d(DP, C(r_{2}^{k})) + \sum_{i=1}^{s-1} d(C(r_{i}^{k}), C(r_{i+1}^{k})) + d(C(r_{s}^{k}), DP)) + \cdots$

 $(Tr_1, \cdot), (Tr_2, \cdot), (Tr_1, \cdot), (Tr_2, \cdot), (\cdot, TrE_1), \cdots$

18 / 20

 $x_{ij}^{k} = \begin{cases} 1 & \text{if } i\text{-th job-I}(i\text{-th Demand}) \text{ is assigned to Trailer } j \text{ oin Cluster } k \\ 0 & \text{otherwise} \end{cases}$

min
$$\sum_{k}^{p} c(R^{k})$$
 s.t. (1)
 $\sum_{i}^{r} \sum_{j}^{q} \sum_{k}^{p} x_{ij}^{k} = \sum_{i}^{r} D(i)$ (2)

where

$$c(R^{k}) = d(DP, C(r_{1}^{k})) + d(C(r_{1}^{k}), DP) + d(DP, C(r_{2}^{k})) + \sum_{i=1}^{s-1} d(C(r_{i}^{k}), C(r_{i+1}^{k})) + d(C(r_{s}^{k}), DP)) + \cdots$$

Thank You

Montaz Ali¹ & Stephen Visagie² 1: Scho The Drop Shunting Problem

Image: A matrix and a matrix

3